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Summary 

Octaethylporphyrinrhodium dimer, [ RhOEP], , reacts thermally with aryl- 
methyl C-H bonds to produce octaethylporphyrinbenzylrhodium compounds. 

Reactions of C-H bonds with metallo species are emerging as a major focal 
point for organometallic-catalysis studies [ 11. A major advance in this area came 
with the discovery of metallo complexes that give well characterized oxidative 
addition reactions of the C-H fragment of alkanes (reaction 1) [2]. 

M+H-C$ 2 H-M-CC (1) 

Our efforts in this field have centered on the search for a system where a net 
oxidative addition of the C-H unit occurs across a M-M single bond (reaction 2). 

M-M + >--C-H + M-H+M-C< (2) 

In this manner, the M-H and M-Cf units can be separated and permitted to 
react independently. We wish to report that octaethylporphyrinrhodium dimer, 
(RhOEP)2, accomplished this type of reactivity with methyl groups of arenes 
(CH3)C6Hs, (CH3)&H4, ((CH,)JJ6H3) to produce rhodium hydride and benzyl- 
rhodium derivatives (reaction 3). RhOEP(H) subsequently eliminates Hz to give 
the overall process depicted by reaction 4. 

(RhOEP)* + CH3C6HS --f RhOEP(H) + RhOEP(CH2C6H5) (3) 

(RhOEP)I + 2CH3C6H5 + 2 0EPRhCH2C6H5 + Hz (4) 

In one typical experiment, 4 mg of (RhOEP)I was placed in an NMR tube 
adapted for vacuum manipulation. m-Xylene, distilled from benzophenone- 
sodium, was vacuum distilled into the NMR tube. The solution was heated at 
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120°C for 3 h. Electronic absorption studies conducted on samples more dilute 
than those studied by NMR reveal the reaction to be complete after 3 h (Fig. 1). 
NMR spectra for the reaction products were obtained in tubes that were sealed 
after removal of excess m-xylene and replacement with C6D6 solvent. NMR 
spectra of samples that were prepared with minimal exposure to light demon- 
strate essentially quantitative formation of the organometallic, RhOEP- 
(CH,C6H,CH3). The high field (6 -4.0) doublet (J(lo3Rh-CH) 3.9 Hz) correspond- -- 
ing to the benzylic CH2 group is most characteristic of the organometallic prod- 
uct (Table 1). Samples exposed to laboratory lighting invariably contain 
(RhOEP), which results from the homolytic photodissociation of the Rh-C 
fragment. Proton NMR spectral data for the organometallic products appear in 
Table 1. 
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Fig. 1. Electronic absorption spectra for a 9.8 X lop5 M solution of (RhOEP), in m-xylene at 95’C. 

(-) t = 0. (-*-.) t 1 h. (...) t 2 h, (- - -) t 3 h. (Electronic absorption spectrum at t 18 his identical to 

that observed at t 3 h.) 

TABLE 1 

‘H NMR SPECTRA OF OCTAETHYLPORPHYRINBENZYLRHODIUM COMPOUNDSa’b 

Porphyrin Benzyl group 

C-H CH, CH, CH, CH, o m P 

Toluene 10.110(s) 3.961(q) 1.908(t) -4.019(d) - 2.820(d) 6.681(t) 6.162(t) 
p-Xylene 10.102(s) 3.950(s) 1.905(t) -4.013(d) 1.468(s) 2.767(d) 5.490(d) - 

m-Xylene 10.128(s) 3.965(q) 1.923(t) -4.000(d) ’ 2.709(d) 5.628(t) 6.048(d) 

2.695(s) 

a C,D, solvent. ’ Values in 6 relative to TMS. ' Peak obscured by overlapping spectra. 
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The thermodynamic criteria for oxidative addition to the M-M bond (reac- 
tion 2) are more stringent than to a single metal center (reaction 1) by approx- 
imately the M-M bond energy, but this is partially compensated by a more 
favorable entropy change. The homolytic dissociation energy for (RhOEP)2 has 
been estimated to be 17 kcal from NMR studies for the reaction (RhOEP)2 “c 
2RhOEP’ [ 31. A methyl C-H bond energy of 88 kcal in toluene requires that 
the average of the Rh-H and Rh-C bond energies must exceed 52 kcal in order 
for reaction 3 to be exothermic. Thermodynamic studies of RhOEP(H) and 
RhOEP(CH0) indicate that the Rh-H and Rh-C bond energies are comparable 
and approximately 55-60 kcal [ 31, which suggests that the organometallic chem- 
istry depicted by reaction 2 may be obtained even when the C-H bond energy 
exceeds 100 kcal. 

(Rh=OEP)+ has recently been shown to react by electrophilic substitution 
with aromatic molecules to produce arylrhodium compounds [ 41. The reaction 
of (RhOEP)+ with toluene is reported to yield p-RhOEP(C6H&H3) as the exclu- 
sive product. Absence of aromatic substitution in the reaction of (RhOEP)2 
with toluene suggests that an ionic mechanism involving heterolytic cleavage of 
the Rh-Rh bond is not important in this reaction. We believe that the reactions 
of (RhOEP)* with hydrocarbons proceed by a pathway involving the interaction 
of a metal centered radical with a C-H unit. 

(RhOEP)* 2 20EPRh= l 

OEPRh=’ + HC 5 -+ ([OEPRh’HCf] ++ [OEPRhH’Ce]) 

OEPRh’I’ + ([OEPRh’HCc] * [OEPRhH’Ce]) + OEPRh-Cc + 

RhOEP(H) 

OEPRh( H) Z f (OEPRh), + + Hz 

Absence of a p-hydrogen in the benzylic derivatives allows observation of the 
organometallic by promoting kinetic stability. Our primary goal is to demon- 
strate the feasibility of establishing catalytic reactions of C-H bonds. A photo- 
catalytic cycle corresponding to homolytic cleavage of the C-H bond can be 
established for the specific systems reported in this study. Thermal catalytic 
cycles can be visualized for systems where the organometallic intermediate 
either has a weaker M-C bond or is capable of p-hydride elimination. Reactions 
of (RhOEP)? with hydrocarbons capable of manifesting these two types of be- 
havior are presently being evaluated. 

C6H$Hs + (RhOEP)z + RhOEP(H) + RhOEP(CH2C6HS ) 

RhOEP(H) 2 ; (RhOEP)2 + + Hz 

RhOEP(H) hu $ (RhOEP)2 + H’ 

RhOEP(CH&H5 ) ” - + (RhOEP)2 + &H&HZ* 



c30 

Acknowledgment. This work was supported by the National Science 
Foundation. 

References 

1 (a) G.W. ParshaIl, Catalysis (London), 1 (1977) 335; (b) G.W. ParshaII, Homogeneous Catalysis, Wiley- 
Interscience. New York, 1981; (c) H. Pines, The Chemistry of Catalytic Hydrocarbon Conversions. 
Academic Press. New York. 1981. 

2 (a) R.H. Crabtree, M.F. MeIIea. J.M. Mihelcic and J.M. Quirk. J. Am. Chem. Sot., 104 (1982) 107; 
(b) R.G. Bergman, A.H. Janowicz, ibid., 105 (1983) 3929; (c) J.K. Hoyano. W.A.G. Graham, ibid., 
104 (1982) 3723; (d) P.L. Watson, ibid., 105 (1983) 6491: (e) F.J. Feher, W.D. Jones, ibid.. 
106 (1984) 1660. 

3 B.B. Wayland, B.A. Woods and V.M. Minda. J. Am. Chem. Sot., 1984 (submitted). 
4 H. Ogoshi, K. Sakurai, T. Yoshida. Y. Aoyama, Chem. Comm., (1983) 478. 


